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PHD'OEECTRDN EMISSION SPEICTMSCOPY OF WEK ACIDS AND BASES AND THEIR IONS IN

AQUEOUS SOLUTION

KATHRIN von BURG and PAUL DEAHAY

Department of Chemistry, New York University, New York, New York 10003, U.S.A.

Threshold energies Et are determined for 14 weak acids and three bases
tand their ions. Values of E t are interpreted in terns of dissociation or

protonaticn reactions involving species produced by photoicnization. Electron

transfer to weak acid molecules in solution is shown to occur for emission by

inorganic anions and cations and weak acids.

The threshold energies Et for photoelectron emission by aqueous

solutions of a few anions of weak acids were reported in earlier papers :1,2-.

No correlation of the Et values was attenpted at that stage. This is done

in the present paper on the basis of rather extensive data for weak acids and

bases and their icns. Weak acids will also be shown to be excellent electron

acceptors in solution.

1. Weak acids and their anions

The experimental methods developed in 112 and applied in 12-4 were used

in the present work. Emission spectra obtained for aqueous solutions of acids

and their salts displayed the yield Y (collected electrons per incident

photon) as a function of the photon energy E. The threshold energies E3t

(table 1) were obtaird by extrapolation of the linear plots Yn vs. E to Y -

0 for n - 0.5 or 0.4 :5". The choice of exponent is discussed in 12-5,. The

yield for formic acid (4 M) was very low and only about twice that for pure

water (Et a 10.06 eV L41).

The threshold energies will be interpreted on the basis of the equation

:2-4-,



A~ %+ XAG- AGj,(1

for the free energy of emission AG3 of the species H nA-(aq) (n = 1e n-j
to 3, j = 0 to 3). The quantity G = 4.50 eV [62 is the free energy of

formation of the electron in vacuum on the assumption that the surface

potential at the solution-water vapor interface is negligible (+ 0.. V for

water [L7.). AGj is the change of free energy for the reaction

H n-jAJ-(aq) + H+ (aq) = HnjAJ -l)- (ag) + 1/2H2 (g), (2)

and LG3 (< 0) is the reorganization free energy for the process in which

there is vibrational relaxation and the solvaticn nuclear configuration

adjusts from j- to (j-l)- ionic charge.

Equation (1) will be aplie first to the acid HnA and its anion

Hn_IA-. One has (fig i)
Ge  nA) -aG e HnIA-) = [ GH 1n~A- ) - GH CA)]!

A) A) -]~r A)LGH ) (3)
n(H e 1 ,Gn- rG n- r)n+ t 'G HnA+ ) - G(Hn_IA) ' + 4'GE r _A - 'Gr (H nA+) ! (3)

where the symbol LG(X) represents the free energy of formation of species X in

aqueous solution, and the ,Gr's are the reorganization free energies.

Equation (3) is similar W the corresponding relationship for water and

hydroxide ion L4. Each of the three terms on the right hand side of eq 3

will be discussed.

One has
1 =G(Hn_A - G(HnA)

=- 0.0592 log K1  F (4)

where LG is expressed in electronvolts and K1 is the first

1dissociation oonstant of HnA. One has 0.1 < L < 0.3 eV for the acids

of table 1. The third terms between brackets on the right hand side in eq (3)

pertains to the change of ionic charge from -I to 0 and 0 to 1 in the

/
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photoinizaticn of Hn_lA and HnA , respectively. The ions Hn_IA

and HA+ have comparable sizes although the latter is presumably slightly

bulkier than the former. Contributions from vibrational relaxation should

nearly cancel out in the difference of LGr 's. Since the LGr 's are

negative, one concludes cn the basis of ionic sizes ard equality of charge in

absolute value that the third term in eq (3) is negative and small (a few

tenths of electronvolt).

Equation (3) can be rewritten in the form,

i= E 1- 1- 1

= [LG(n A ) -S(Hn-lA)1- '- L(Gr), (5)

where the free energies of emission are equated to the threshold energies

L2-4i and the difference of reorganization free energies is denoted by

l(L G). The sperscripts o and 1 correspond t HnA and HnlA- ,

respectively. The first term between brackets in eq (5) is the change of free

energy for the protonaticn reaction,
+]

HnIA + H+ = HA, (6)

involving the species produced by photoinization of H nA- and HnA,

respectively. The ion HnA is thermodynamically unstable and the radical

Hn_A does rot protonate to any significant extent if the cndition,

Li l (LGr) > 0, is satisfied (eq (5)). Since L (LGr) is negative

and L1 > -0.2 eV, the foregoing conclusicn is fulfilled for all the acids of

table 1, albeit marginally for maleic acid. Thus, photoionizatin of a weak

acid produces an ion which dissociates quite completely into a H+ ion and

the radical Hn_1A. This result may be compared with the frequently observed

enhancement of the strength of a weak acid upon excitation to its first

electronic excited state [8.
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Equation (5) is readily generalized (fig 1). The difference of

reorganization free energies L2(AGr) pertains to the photoinization of

Hn_ 2A2- and H A , respectively. Sinre these two ions have

comparable sizes, one expects from the Born equation that the ratio of AGr 's

be approximately equal to the square of the ratio of ionic charges in the

absence of dielectric saturation. The Born equation is approximate and there

is saturation 73,61, especially for divalent ions, but one can safely conclude

2that L (2 G r) is negative and rnt regligible. Hence, the condition
S.2 _ t2(LGr > 0 is satisfied for all the acids of table 1. The radical

Hn_IA produced by photo ionization of Hn_A in is unstable and the ion

Hn 2 A resulting from photoicnization of Hn_ 2A2- des not protonate to

any extent. The same analysis and conclusion are applicable to photoelectron

emission by the ions HA2- and A3- of table 1.

2. Weak bases and their cations

Weak bases in aqueous solution have lower threshold energies than their
cations (table 1). One has (cf. eq (3)) for the base and its cation BH+

G e(B) - AG (BE) = LAG(BH+ ) - LG(B)i

+ L(B -GG(BH2) + [AG BH2  - AGr + (7)

where AG(X) represents the free energy of formation of X in aqueous solution.

The first term (< 0) on te right aend side of eq (7) is (in eV)

1+
LGj = LG(H) - LG(B)

= -0.0592 log Kp (8)

where Kp is the equilibrium constant for the protonation reaction

B + H+ = WE+ . The difference between the reorganization free energies

L1 (G r) is regative and rot regligible because of the difference in ionic

charge (ard despite dielectric saturation).
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One has

=E Et + LGK

2+ 1
= (GHG ) - 6G(B+) - tl(G r), (9)

where the superscripts o and 1 refer to B and BH+ , respectively, and the

first term between brackets on the right hand side is the change of free

energy for the protonatian reaction, B+ + H+ = . This change of

free energy, equal to .1+ L (LGr), is negative for triethylamine and

ethylenediamine since L 0.2 eV far these bases and LI (LGr) , -0.5 eV

(see above). Thus, the icn B+ produced by photoicnizaticn of B protonates

and the cation BE2 + is stable provided the pH is not too high. A similar

condition is reached for the photoicnization of the ian BH + of

ethylenediamine (table 1). The quantity it LGrG) for aniline is

probably positive or close to zero since L= 0.8 eV and protonation of

must be minor even in strongly acidic solution. Thus, photoianizaticn of a

weak base B (aniline) produces an in B which is a weaker base than B. A

similar effect is frequently observed as a result of the excitation of a weak

base to- its first electronic excited state [8 .

3. Weak acids as electron acceptors in electron transfer reactions

The emissin yield Y of a solution is proportional to the emitter

concentratin in the absence of complications J1-5.. This proportionality

relationship also holds for the squared slope S2 of the linear extrapolation

plot Y vs. E0 . 5 (sec 1, n = 0.5 here). The plots of the squared slope S2

against acid concentration for acetic or propinic acid actually exhibit a

maximum (fig 2). This result, as was recently shown [9,1, is typical of

electron transfer between the emitting species and an electron acceptor upon

absorption of a photon. The emitter and electron acceptor are different

molecules of the same acid in the present case. Thus, some electrons which



6

would be emitted into the vapor phase in the absence of electron transfer in

solution are rot emitted and the yield is lowered as a result of electron

transfer.

The emission yield with electron transfer in solutioni was shown L9. to

obey the following equation to a gocd approximation

Y = kC. exp (-Ca/Cc). (10)

There k is a proportionality constant; Cm and Ca are the emitter and

acceptor concentration, respectively; and Cc is a

concentration whidi is characteristic of the kinetics of electron transfer.

Dissociation of the acids of fig 2 can be reglected, and one has Cm = Ca a

C to a good approximation, wh- e C is the analytical acid concentration. The

plot of Y (or S 2 ) vs. C exhibits a maximum at C = Cc according to eq (10),

and the plot of log (S 2/C) vs. C is linear. These predictions are verified

in fig 2. The omcentratin C = Cc at the maximum of the S2 vs. C plot

defines a volume i!Cc in which electron transfer is supposed to occur

according to the model leading to eq (9) L9'. Ore has ca. v = 0.4 nm3 for

the data of fig 2, that is, a radius of ca. 0.5 nm if the volume v is supposed

to be spherical. This length can be interpreted as the separation of two acid

molecules undergoing electrn transfer. Caution is in order since a

sirplified model was assumed in the derivation of eq (10), and the quantity v

can be viewed as the product of an actual volume and a probability of electron

transfer .9j.

Emitter and acceptor reed not be the same acid. Thus, the yield of acetic

acid is lowered by addition of formic acid. The latter does not contribute to

emission since it has a higher threshold energy (10.0 eV, table 1) than acetic

acid (9.00 eV). Log S2 at constant (2 M) acetic acid concentration indeed

was found to decrease linearly with formic acid concentration from 0 to 7 M.
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Aliphatic acids also lower the emission yield of inorganic anions (fig 3)

and cations (fig 4). The slope S to the power 1/n is proportional to the

emission yield, where n is the exponent in the extrapolation plot Yn vs. E

of the anions or cations. Thus, the plots of log SI / n vs. acceptor

concentration at constant emitter concentration in fig 3 and 4 are linear as

expected from eq (10). A strong anion effect on the rate of electron transfer

is displayed in fig 3 just as in a similar plot in j9] for emission by halides

in presence of Ba 2+ ions (electron acceptor).

The results of fig 4 for T1+ ion are the first ones obtained for the

lowering of the erission yield of a cation. The Tl+ ion was selected

because coplexatin with acetic or formic acid is negligible (K1 =

1001I for acetic acid 110). Lowering of the emission yield of anions by

electron transfer to cations is common [9,, e.g., the effect of Fe 2+ on

emission by Cl-. The Fe 2+ ions, however, cb rnt affect emission by other

Fe 2+ ions because of electrostatic repulsion between Fe2+ ions (ionic

atmosphere). Lowering of the yield of a cation (Tl + ) is observed with an

electrically neutral electron acceptor (fig 4). Conversely, the yield of

Tl+ is tmt lowered by H+ ion even in 6 M solution of a strong ac-'.

(triflucroacetic), although H+ ion is an excellent electron acceptor in the

emission y anions.
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Table 1

Threshold energies and relevant quantities for weak acids and bases and their

ianSa)

Acid E3 (eV) (eV) J (eV)t

formic 10.0 , 7.55 0.22 2.2

acetic 9.00, 7.82 0.28 0.9

mrcnochioroacetic 9.24, 8.50 0.17 0.6

trichloroacetic 9.46, 8.55 0.04 0.9

propicnic 9.08, 8.42 0.29 0.4

n-butyric 8.99, 8.23 0.29 0.5

carbonic - , 9.07, 7.40 - , 0.61 - , 1.1

oxalic 8.26, 7.50, 7.32 u.08, 0.25 0.7, -0.1

tartaric 8.55, 7.72, 7.37 0.18, 0.26 0.6, 0.1

malcnic 8.74, 8.33, 7.80 0.17, 0.34 0.2, 0.2

maleic 8.20, 8.31, 8.40 0.11, 0.36 -0.2, -0.4

phosphoric 9.45, 9.23, 8.79, 7.44 0.13, 0.43, 0.73 0.1, 0.0, 0.6

arsenic 9.44, 9.09, 8.50, 8.30 0.13, 0.40, 0.69 0.2, 0.2, -0.5

citric 8.66, 8.52, 8.39, 7.48 0.19, 0.28, 0.38 0.0, -0.1, 0.5

triethylami ne 6.73, 7.57 -0.64 0.2

aniLine 7.39, 8.44 -0.27 0.8

etlylenediadne 7.20, 7.47, 8.13 -0.59, -0.41 -0.3, 0.3

a)1 M solutions in all cases except for formic (4 M) and oxalic (0.4 M)

acids, oxalate (0.4 M), bitartrate (0.05 M), morn- and dibasic arsenate

(0.5 M), tribasic arsenate (0.25 M), anilire (0.05 M
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Captions W Figures

Fig. 1. Free energy diagram for photoelectron emission by HnA, HnIA-

2-and % 2 A . All species shown are in aqueous solution. See text for

notations.

Fig. 2. Squared slope S2 = (dy0.5/dE)2 for emission by acetic (A) and

propionic (B) acid vs. acid concentration C. Points are experimental, and the

curves were calculated from eq (10). Log (S 2/C) vs. acid cincentration for

acetic (C) ard propicnic (D) acids.

Fig. 3. Log S1/n for emission by anions vs. formic acid concentration for

2 M KC1 (A), 2 M KBr (B), 2 M KI (C) and 1 M Li2so4 (D). S = dYn/dE

42witn=05fr~2-J and n =0.4 for BrandlI-

Fig. 4. Log S2 . 5 vs. acid concentration for emission by T1 + ions (0.25 M

TlClO4 ) in presence of trifluroacetic (A), formic (B) or acetic (C) acid.

S = dY0 . 4 /dE for T1+ icn.

I,
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